Numerical resolution of cone-constrained eigenvalue problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving inverse cone-constrained eigenvalue problems

We compare various algorithms for constructing a matrix of order n whose Pareto spectrum contains a prescribed set Λ = {λ1, . . . , λp} of reals. In order to avoid overdetermination one assumes that p does not exceed n2. The inverse Pareto eigenvalue problem under consideration is formulated as an underdetermined system of nonlinear equations. We also address the issue of computing Lorentz spec...

متن کامل

Cone-constrained eigenvalue problems: theory and algorithms

Equilibria in mechanics or in transportation models are not always expressed through a system of equations, but sometimes they are characterized by means of complementarity conditions involving a convex cone. This work deals with the analysis of cone-constrained eigenvalue problems. We discuss some theoretical issues like, for instance, the estimation of the maximal number of eigenvalues in a c...

متن کامل

A nonsmooth algorithm for cone-constrained eigenvalue problems

Such an eigenvalue problem arises in mechanics and in other areas of applied mathematics. The symbol K refers to a closed convex cone in the Euclidean space R and (A,B) is a pair of possibly asymmetric matrices of order n. Special attention is paid to the case in which K is the nonnegative orthant of R. The more general case of a possibly unpointed polyhedral convex cone is also discussed in de...

متن کامل

The Numerical Treatment of Large Eigenvalue Problems

This paper surveys techniques for calculating eigenvalues and eigenvectors of very large matrices.

متن کامل

A Symplectic Perspective on Constrained Eigenvalue Problems

The Maslov index is a powerful tool for computing spectra of selfadjoint, elliptic boundary value problems. This is done by counting intersections of a fixed Lagrangian subspace, which designates the boundary condition, with the set of Cauchy data for the differential operator. We apply this methodology to constrained eigenvalue problems, in which the operator is restricted to a (not necessaril...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational & Applied Mathematics

سال: 2009

ISSN: 0101-8205

DOI: 10.1590/s0101-82052009000100003